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Abstract—In this paper we present protograph codes with
a small number of degree-3 nodes and one high degree node.
The iterative decoding threshold for proposed rate 1/2 codes
are lower, by about 0.2 dB, than the best known irregular
LDPC codes with degree at least 3. The main motivation is
to gain linear minimum distance to achieve low error floor.
Also to construct rate-compatible protograph-based LDPC codes
for fixed block length that simultaneously achieves low iterative
decoding threshold and linear minimum distance. We start with a
rate 1/2 protograph LDPC code with degree-3 nodes and one high
degree node. Higher rate codes are obtained by connecting check
nodes with degree-2 non-transmitted nodes. This is equivalent to
constraint combining in the protograph. The condition where all
constraints are combined corresponds to the highest rate code.
This constraint must be connected to nodes of degree at least
three for the graph to have linear minimum distance. Thus
having node degree at least 3 for rate 1/2 guarantees linear
minimum distance property to be preserved for higher rates.
Through examples we show that the iterative decoding threshold
as low as 0.544 dB can be achieved for small protographs with
node degrees at least three. A family of low- to high-rate codes
with minimum distance linearly increasing in block size and
with capacity-approaching performance thresholds is presented.
FPGA simulation results for a few example codes show that the
proposed codes perform as predicted.

I. INTRODUCTION
Low-density parity-check (LDPC) codes were proposed by

Gallager [1] in 1962. After introduction of turbo codes by
Berrou et al [2] in 1993, researchers revisited LDPC codes,
and extended the work of Gallager using the code graphs
introduced by Tanner [3] in 1981. After 1993 there have been
many contributions to the design and analysis of LDPC codes;
see for example [10], [12], [4], [13], [14], [15], and references
there. Recently a flurry of work has been conducted on the
design of LDPC codes with imposed sub-structures, starting
with the introduction of multi-edge-type codes in [9] and [11].
Fixed block length codes are desirable in scenarios where

a framing constraint is imposed on the physical layer. This
occurs, for instance, when orthogonal frequency division mod-
ulation is used. Prior work on fixed block length LDPC
codes has been described in [23] where the authors provide
a technique for combining rows of a rate 1/2 parity check
matrix to form higher rate codes. In this paper we use degree-
2 punctured nodes to implement row combining (thereby

achieving rate compatibility), but use no transmitted degree-2
nodes. By avoiding transmitted degree-2 nodes we obtain a
code structure whose minimum distance grows linearly with
blocksize n. Note that limiting code design to the use of
degree-3 and higher variable nodes is a sufficient, but not nec-
essary condition for minimum distance to grow linearly with n
[18]. In this paper we demonstrate that small protograph based
codes can in fact achieve competitively low thresholds without
the use of degree-2 variable nodes and without degree-1 pre-
coding in conjunction with the puncturing of a high degree
node [25].

II. PROTOGRAPH LDPC CODES
To aid in implementation of high-speed decoding, it is

advantageous for an LDPC code to be constructed from a
protograph [7] or projected graph [8]. A protograph is a Tanner
graph with a relatively small number of nodes. A “copy-and-
permute” operation [7] can be applied to the protograph to
obtain larger derived graphs of various sizes. This operation
consists of first making N copies of the protograph, and then
permuting the endpoints of each edge among the N variable
and N check nodes connected to the set of N edges copied
from the same edge in the protograph. The derived graph is the
graph of a code N times as large as the code corresponding to
the protograph, with the same rate and the same distribution of
variable and check node degrees. LDPC codes with protograph
structure are a subclass of multi-edge-type LDPC codes.
As an example for protograph based LDPC codes we

consider the rate-1/3 Repeat-Accumulate (RA) code depicted
in Fig. 1(a). For this code the minimum Eb/N0 threshold with
iterative decoding is 0.502 dB. This code has a protograph rep-
resentation shown in Fig. 1(b), as long as the interleaver � is
chosen to be decomposable into permutations along each edge
of the protograph. The iterative decoding Eb/N0 threshold is
unchanged despite the additional constraint imposed by the
protograph. The protograph consists of 4 variable nodes and
3 check nodes, connected by 9 edges. Three variable nodes are
connected to the channel (transmitted nodes) and are shown
as dark filled circles. One variable node is not connected to
the channel (i.e., it is punctured) and is depicted by a blank
circle. The three check nodes are depicted by circles with a
plus sign inside.
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Fig. 1. (a) A rate-1/3 RA code with repetition 3, and (b) its corresponding
protograph.

Repeat-Accumulate (RA) [5], Irregular Repeat-Accumulate
(IRA) [6], and recently proposed Accumulate-Repeat-
Accumulate (ARA) [16] codes, with suitable definitions of
their interleavers, all have simple protograph representations.
These codes provide fairly low iterative decoding thresholds
but have sublinear minimum distance. However for certain
applications linear minimum distance is required for low error
floor performance.

III. RECIPROCAL CHANNEL APPROXIMATION IN
PROTOGRAPHS

Computation of iterative decoding thresholds for the pro-
tographs in this paper follows a fast and accurate approxima-
tion to density evolution originally proposed in [22]. Less than
0.005 dB deviations from true density evolution thresholds
have been observed by the application of this approximation
to protographs in BI-AWGN channels.
The reciprocal channel approximation (RCA) makes use of

a single real-valued parameter, in this case signal-to-noise ratio
(SNR) s, as a stand-in for full density evolution. For every
value of s, a reciprocal of SNR, r, is defined such that C(s)+
C(r) = 1, where C(x) denotes the capacity of the binary-
input AWGN channel with SNR x. In the reciprocal channel
approximation, the parameter s is additive at variable nodes,
and the reciprocal parameter r is additive at check nodes.
Chung’s self-inverting reciprocal energy function, R (x) =
C♠1 (1 ♠ C (x)), transforms between the parameters s and r,
namely r = R(s) and s = R(r).
To apply the RCA technique to a protograph we first identify

all transmitted variable nodes and select a target channel SNR
schan. As shown in Fig. 2 messages

⇀
se are passed along edges

leaving variable nodes (⇀se = schan from transmitted nodes
and ⇀

se = 0 from punctured nodes). The transformation R(⇀
se)

is applied and an extrinsic return message, ↼
r e, is determined

by computing the sum of all incoming messages save the one
along edge e. Transformation R(♠) is then reapplied to produce
↼
se. The process continues and a threshold is determined by
the smallest value of schan for which unbounded growth of
all messages ⇀

se can be achieved.
Motivation for applying RCA to the BI-AWGN channel

most likely derived from the fact that a similar reciprocal
channel definition yields exact density evolution results [22]
when applied to the binary erasure channel (BEC). In the case
of a BEC with erasure probability � and capacity C = 1 ♠ � ,

se = schan + se'
e' ∈ev\ e
∑

re = re'
e '∈ec \ e
∑

se = R(re)

re = R(se)

e

v

c

Fig. 2. The reciprocal channel approximation in use on a protograph.

a parameter s = ♠ log � is additive at variable nodes, a
reciprocal parameter r = ♠ log(1 ♠ � ) is additive at check
nodes, and s and r are related by C(s) + C(r) = 1 .

IV. PROTOGRAPH OF REGULAR LDPC CODES
Classic regular LDPC codes, in addition to simplicity, have

low error floors. However, their iterative decoding thresholds
are high. For example the (3,6) regular LDPC codes have an
iterative decoding threshold of 1.102 dB while their ensemble
asymptotic minimum distance grows like 0.023n as n goes
to infinity. For comparison the asymptotic minimum distance
of random codes grows as 0.11n. We express the normalized
logarithmic asymptotic weight distribution of a code as r(� ) =
ln(Ad)

n where d is Hamming weight, � = d
n , and Ad is the

ensemble weight distribution. If r(� ) starts out negative near
� = 0 and has a first zero crossing at � = � min > 0, then the
average minimum distance of the code ensemble is dmin =
n� min, which grows linearly with n at the rate � min. This
growth rate � min is a characteristic of the specific protograph
from which the LDPC code ensemble is constructed. Methods
to compute the asymptotic weight enumerators for LDPC
codes with protograph structure are presented in [19] and [20].
Fig. 3 compares the asymptotic weight distribution of (3,6)

regular LDPC codes to that of rate 1/2 random codes.
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Fig. 3. Asymptotic weight distributions and zero crossings for (3,6) regular
LDPC and rate 1/2 random codes.

V. PROTOGRAPHS LDPC CODES WITH NODE DEGREES AT
LEAST 3

We wish to construct rate-compatible protograph-based
LDPC codes for fixed block lengths that simultaneously



achieve low iterative decoding thresholds and linear minimum
distance (� min > 0) such that error floors may be effectively
suppressed. We start with a rate 1/2 protograph LDPC code
with degree-3 nodes and one high degree node (which serves to
lower threshold). Higher rate codes are obtained by connecting
check nodes with degree-2 non-transmitted nodes. This is
equivalent to constraint combining in the protograph. The
condition where all constraints are combined corresponds to
the highest rate code. This constraint must be connected to
nodes of degree at least three for the graph to have linear
minimum distance growth. Thus having node degrees at least
3 for rate 1/2 guarantees linear minimum distance property to
be preserved for higher rates. In particular the highest code
rate protograph after combining all checks will have only one
check. Thus if for rate 1/2 protograph we allow degree 2
nodes, then the highest code rate protograph corresponds to
an Irregular Repeat Accumulate code (IRA). We know that
IRA codes do not have the linear minimum distance property.
This is the main reason that the rate 1/2 protograph should
have node degrees of at least 3 for rate-compatible structure.
Otherwise we know that if the number of degree 2 nodes is
less than the number of checks, linear minimum distance is
preserved. This can be easily proved using the results in [20].
It has been shown that optimized rate 1/2 degree distribu-

tions for irregular unstructured LDPC codes with node degrees
at least 3, and maximum degree 25, can achieve iterative
decoding thresholds of 0.73 dB. We have computed this result
using [17]. The output of the computer search is shown below:

Rate= 0.500
Gap to Shannon limit= 0.53238dB
Min left degree= 3
Max left degree= 17
Avgrd= 8.5000000
Variable node edge distribution (node perspective):
3 0.6419580000 (0.9062939465435)
16 0.2893450000 (0.07659134883901)
17 0.0686965000 (0.017114704617489)
Check node edge distribution (node perspective):
8 0.5 (0.52941176470588)
9 0.5 (0.47058823529412)

We next show that it is in fact possible to design protograph
based rate 1/2 LDPC codes with degrees at least 3 and
maximum degree not more than 20, with iterative decoding
threshold less than 0.73 dB. We start with a rate 1/2, eight
node protograph with variable node degrees 3 as shown in
Fig. 4(a). As expected the iterative decoding threshold for
this code is 1.102 dB. We next change one of the nodes to
degree 16 (in similar fashion to the degree 16 node used in the
optimum irregular unstructured degree distribution) as shown
in Fig. 4(b). The iterative decoding threshold for this code is
0.972 dB. Note that very little improvement is obtained by
using one high degree node.
Now change the connections of variable node to check nodes
asymmetrically. After few hand selected searches we obtain
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Fig. 4. (a) an eight node rate 1/2 protograph with node degrees 3, (b) the
same protograph with one node of degree 16.

the protograph shown in Fig. 5, which has threshold 0.618
dB.

7

6

5

2

1

0

3

0

1

2

3

4

r=1/2  threshold = 0.618 dB

Fig. 5. A protograph with 7 nodes of degree 3, and one node of degree 16.

Note that it is possible to obtain an even lower threshold (0.544
dB) if the number of nodes in the protograph is increased to
12 and highest node degree is set to 18 as shown in Fig. 6

VI. CONSTRUCTION OF HIGHER CODE RATES
Higher rate codes are obtained by connecting check nodes

with degree-2 non-transmitted nodes. This is equivalent to
constraint combining in the protograph. The condition where
all constraints are combined corresponds to the highest
rate code. Fig. 7 shows such construction for the 8 node
protograph in Fig. 5. Thresholds computed via RCA for the
rate 1/2, 5/8, 3/4, and, 7/8 are 0.618 (gap to capacity 0.43
db), 1.296 (gap to capacity 0.48 db), 1.928 (gap to capacity
0.30 db), 3.052 dB (gap to capacity 0.21 db) respectively.
The protograph in Fig. 7 can be used for rates 1/2, 5/8, 3/4,
and 7/8 if the nodes 8, 9, and 10 are properly set to ”0”
bit (equivalent to not having degree-2 node connections), or
”X”, where ”X” represent no bit assignment to the node (not
transmitted node). See table below for node assignments. At
decoder the corresponding nodes to ”0” bits are assigned
highly reliable values, and to nodes ”X” zero reliability values.

Code rate Node 8 Node 9 Node 10
1/2 0 0 0
5/8 X 0 0
3/4 X X 0
7/8 X X X
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Fig. 6. A protograph with 11 nodes of degree 3, and one node of degree 18.
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Fig. 7. Construction of rates 5/8, 3/4, and 7/8 using an 8-node rate 1/2
protograph.

VII. CODE CONSTRUCTION AND SIMULATION RESULTS

The protograph associated with the rate 7/8 code (all nodes
and edges in Fig. 7) was lifted by a factor of 4 using
progressive edge growth [24] to remove all multiple parallel
edges. The resulting graph was then lifted using the ACE
algorithm [21] to find phases associated with circulants of
size 181. These circulants are described in the transposed H
matrix given in Table I. Note that in the table the first twelve
rows correspond to nodes 8, 9, 10 (lifted by 4) from Fig. 7.
Intermediate rows correspond to nodes 0, 1, 2, 4, 5, 6, 7 and the
last four rows in Table I represent node 3. Each entry denoted
by xi represent a circulant permutation where i represents
the amount of right circular shift of non-zero elements in the
identity matrix.
Fig. 8 shows bit (solid curves) and frame (dashed curves) er-

ror rate FPGA simulation results computed by JPL’s Universal
Decoder for Sparse Codes. The lowest three rates exhibit no
error flooring at frame error rates of 10♠6 and higher. While

the rate 7/8 code does display error events near the 10♠6 level
due to error trapping sets. Note that the circulants for rates 1/2,
2/3, and 3/4 are the same as those for the rate 7/8 code with the
exception of removal of circulants (and edges) associated with
node 10 in Fig. 7. In the context of a decoder implementation,
instead of being removed, nodes 8, 9, 10 could be assigned
highly reliable values to ”0” bits to obviate contributions to
their respective check nodes as it was discussed in section VI.
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Fig. 8. Performance of n=5792 rate 1/2, 5/8, 3/4, 7/8 family of codes.

VIII. CONCLUSION
In this paper we introduced a new construction technique for

designing ensembles of structured codes with constant block
length. These codes exhibit both good threshold performance
and a minimum distance that for an average instance from the
ensemble increases linearly with blocklength.
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